domingo, 11 de enero de 2015

ACTIVIDAD PAG.79 LIBRO ELECTRONICO


ACTIVIDAD PAG 75-78 DESARROLLO SUSTENTABLE


ACTIVIDAD PAG 72 FOCOS



FUNCIONAMIENTO DE LA LAMPARA FLUORECENTE Y DE LA INCANDECENTE

Las lámparas fluorescentes funcionan de la siguiente forma:



http://www.asifunciona.com/electrotecnia/af_fluorescentes/img_fluorescentes/af_000009_5.jpg




  1. Cuando activamos el interruptor de una lámpara de luz fluorescente que se encuentra conectada a la red doméstica de corriente alterna, los electrones comienzan a fluir por todo el circuito eléctrico, incluyendo el circuito en derivación donde se encuentra conectado el cebador (estárter).
  2. El flujo de electrones de la corriente eléctrica al llegar al cebador produce un arco o chispa entre los dos electrodos situados en su interior, lo que provoca que el gas neón (Ne) contenido también dentro de la cápsula de cristal se encienda. El calor que produce el gas neón encendido hace que la plaquita bimetálica que forma parte de uno de los dos electrodos del cebador se curve y cierre un contacto eléctrico dispuesto entre ambos electrodos.
  3. Cuando el contacto del cebador está cerrado se establece el flujo de corriente eléctrico necesario para que los filamentos se enciendan, a la vez que se apaga el gas neón.
  4. Los filamentos de tungsteno encendidos provocan la emisión de electrones por caldeo o calentamiento y la ionización del gas argón (Ar) contenido dentro del tubo. Esto crea las condiciones previas para que, posteriormente, se establezca un puente de plasma conductor de la corriente eléctrica por el interior del tubo, entre un filamento y otro.
  5. La plaquita bimetálica del cebador, al dejar de recibir el calor que le proporcionaba el gas neón encendido, se enfría y abre el contacto dispuesto entre los dos electrodos. De esa forma el flujo de corriente a través del circuito en derivación se interrumpe, provocando dos acciones simultáneas:

    a. Los filamentos de la lámpara se apagan cuando deja de pasar la corriente eléctrica por el circuito en derivación.

    b. El campo electromagnético que crea en el enrollado del balasto la corriente eléctrica que también fluye por el circuito donde éste se encuentra conectado, se interrumpe bruscamente. Esto provoca que en el propio enrollado se genere una fuerza contra electromotriz, cuya energía se descarga dentro del tubo de la lámpara, en forma de arco eléctrico. Este arco salta desde un extremo a otro del tubo valiéndose de los filamentos, que una vez apagados se convierten en electrodos de la lámpara.
  6. Bajo estas nuevas condiciones, la corriente de electrones, que en un inicio fluía a través del circuito en derivación de la lámpara donde se encuentra conectado el cebador, comienza hacerlo ahora atravesando interiormente el tubo de un extremo a otro, valiéndose de los dos electrodos.
  7. La fuerte corriente que fluye por dentro del tubo provoca que los electrones comiencen a chocar con los átomos del gas argón, aumentando la cantidad de iones y de electrones libres. Como resultado se crea un puente de plasma, es decir, un gas compuesto por una gran cantidad de iones y de electrones libres, que permite que estos se muevan de un extremo a otro del tubo.
  8. Esos electrones libres comienzan a chocar con una parte de los átomos de mercurio (Hg) contenidos también dentro del tubo, que han pasado del estado líquido al gaseoso debido a la energía que liberan dichos electrones dentro del tubo. Los choques de los electrones libres contra los átomos de mercurio excitan a sus electrones haciendo que liberen fotones de luz ultravioleta.
  9. Los fotones de luz ultravioleta, invisible para el ojo humano, impactan a continuación contra la capa de fósforo (P) que recubre la pared interior del tubo fluorescente. El impacto excita los electrones de los átomos fósforo (P), los que emiten, a su vez,  fotones de luz visible, que hacen que el tubo se ilumine con una luz fluorescente blanca.
  10. El impacto de los electrones que se mueven por el puente de plasma contra los dos electrodos situados dentro del tubo, hace que estos se mantengan calientes (a pesar de que los filamentos se encuentran ya apagados). Mantener caliente esos dos electrodos se hace necesario para que la emisión de electrones continúe y el puente de plasma no se extinga. De esa forma, tanto el ciclo de excitación de los átomos de vapor de mercurio como el de los átomos de fósforo dentro del tubo continúa, hasta tanto activemos de nuevo el interruptor que apaga la lámpara y deje de circular la corriente eléctrica por el circuito.


http://www.asifunciona.com/electrotecnia/af_fluorescentes/img_fluorescentes/af_000009_8.gif


Esquema del circuito eléctrico de una lámpara fluorescente de 20 wat de potencia: 1. Entrada de la. Corriente alterna. 2. Cebador. 3. Filamentos de tungsteno. 4. Tubo de descarga de luz fluorescente.
5. Balasto o inductancia. 6. Capacitor o filtro.









Lámpara incandescente
En la mayoría de los casos junto con la luz se genera también calor, siendo esa la forma más común de excitar los átomos de un filamento para que emita fotones y alcance el estado de incandescencia.
Normalmente cuando la corriente fluye por un cable en un circuito eléctrico cerrado, disipa siempre energía en forma de calor debido a la fricción o choque que se produce entre los electrones en movimiento. Si la temperatura del metal que compone un cable se eleva excesivamente, el forro que lo protege se derrite, los alambres de cobre se unen por la pérdida del aislamiento y se produce un corto circuito. Para evitar que eso ocurra los ingenieros y técnicos electricistas calculan el grosor o área transversal de los cables y el tipo de forro aislante que deben tener, de forma tal que puedan soportar perfectamente la intensidad máxima de corriente en ampere que debe fluir por un circuito eléctrico.

Cuando un cable posee el grosor adecuado las cargas eléctricas fluyen normalmente y la energía que liberan los electrones en forma de calor es despreciable. Sin embargo, todo lo contrario ocurre cuando esas mismas cargas eléctricas o electrones fluyen a través de un alambre de metal extremadamente fino, como es el caso del filamento que emplean las lámparas incandescentes. Al ser ese alambre más fino y ofrecer, por tanto, más resistencia al paso de la corriente, las cargas eléctricas encuentran mayor obstáculo para moverse, incrementándose la fricción.
 

http://www.asifunciona.com/electrotecnia/af_incandesc/img_incandesc/af_000008_5.jpg


A.– Las cargas eléctricas o electrones fluyen normalmente por el conductor desprendiendo poco calor. B.– Cuando un metal ofrece resistencia al flujo de la corriente, la fricción de las cargas eléctricas. chocando unas contra otras provocan que su temperatura se eleve. En esas condiciones las moléculas. del metal se excitan, alcanzan el estado de incandescencia  y  los  electrones  pueden  llegar  a  emitir. fotones de luz.

Cuando las cargas eléctricas atraviesan atropelladamente el metal del filamento de una lámpara incandescente, provocan que la temperatura del alambre se eleve a 2 500 ºC (4 500 ºF) aproximadamente. A esa temperatura tan alta los electrones que fluyen por el metal de tungsteno comienzan a emitir fotones de luz blanca visible, produciéndose el fenómeno físico de la incandescencia.La gran excitación que produce la fricción en los átomos del tungsteno o wolframio (W), metal del que está compuesto el filamento, provoca que algunos electrones salgan despedidos de su órbita propia y pasen a ocupar una órbita más externa o nivel superior de energía dentro del propio átomo. Pero la gran atracción que ejerce constantemente el núcleo del átomo sobre sus electrones para impedir que abandonen sus correspondientes órbitas, hace que regresen de inmediato a ocuparlas de nuevo. Al reincorporarse los electrones al lugar de procedencia, emiten fotones de luz visible para liberar la energía extra que adquirieron al ocupar momentáneamente una órbita superior.



http://www.asifunciona.com/electrotecnia/af_incandesc/img_incandesc/af_000008_6.gif





Por otra parte la fricción que producen las cargas eléctricas al atravesar el filamento es también la responsable del excesivo calentamiento que experimentan las lámparas incandescentes cuando se encuentran encendidas.

En general este tipo de lámpara es poco eficiente, pues junto con las radiaciones de luz visible emiten también radiaciones infrarrojas en forma de calor, que incrementan el consumo eléctrico. Sólo el 10% de la energía eléctrica consumida por una lámpara incandescente se convierte en luz visible, ya que el 90% restante se disipa al medio ambiente en forma de calor.

TABLA DINAMICA PAG.67


MAPA MENTAL PAG.61


RETROALIMENTACION